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Composite Surface Integral Transforms
in Neutron Therapy of Cancer

Nassar H. S. Haidarf

Received January 8, 2001

Composite surface finite integral transforms are applied to formulate the optimal ballistic
property for a temporally tuned multibeam neutron cancer 3D therapy as a single-valued
dynamical system. By invoking Pontryagin’s maximum principle, with the operation
functions of the beams constituting the control vector, it is proved, in an inverse prob-
lem formulation, that for every spatial configuration of the neutron beams, there exists
an optimal temporal control vector satisfying an a priori system of linear homoge-
neous \olterra integral equations of the first kind and convolution type. A version
of this newly advanced, temporally optimalized, multibeam 3D irradiation therapy,
with a linearized ballistic property, is shown to result from a shooting-type solution
to a related, semihomogeneous dual system of linear integral equations of the first
kind. A criterion for the controllability of this optimization problem has also been
established.

1. INTRODUCTION

Among the variety of possible radiations usable these days in cancer therapy,
namely x raysy rays, electrons, protons, neutrons, heavy iansjesons, it is
generally agreed that high energy protons exhibit the best ballistic index, i.e. the
best ratio of the dose delivered to the tumor, compared with the dose delivered to
the neighboring tissues.

However the effectivity of proton therapy appears to weaken for certain
advanced irresectable tumors (M#ial, 1992), whereas neutron therapy happens
to be more effective than other forms of radiation, because it has the propensity to
kill advanced tumor cells low in oxygen content. Despite their relatively low bal-
listic index, neutrons are established to be primarily indicated for a well-defined
subset of tumors that are mainly locally advanced and irresectable. The locally
advanced tumor part of these cancers is often globally surrounded by the younger
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Fig. 1. Sketch to illustrate the human body as a composite cancerous region that is
irradiated by temporally tuned external neutron beams.

tumor tissues that may not require neutron therapy or can tolerate only a fraction
of the neutron dose admissible by the advanced disease parts.

Itis widely known that temporal changes are practically of no interestray
and charged particle treatment, because their relaxation times inside the tumor
could be in orders of magnitude shorter than the practicable switching times of
their beams. Distinctively, neutron transportin multiregional hydrogenous domains
has a stronger response to temporal changes. In fact neutronic relaxation lengths
are comparable (Haidar, 1982) to the sizes of some subdomains, and neutronic
relaxation times may be comparable (Fujino and Sumita, 1970) to the switching
times of modern cyclotrons.

The transient diffusion of slow neutrons during therapy in a finite composite
region, like that of an advanced cancer (sketched in Fig. 1) has a complex physical
model. It is formulated as a mixed boundary initial value problem in the energy
multigroupG approximation as

Al = [V-DO v+ Y 0] 0.0 =V Saen, @
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Asl@] = [(r. Dl — &, Dls ] =0, (1.2)
NMs[e] = [DO)V(r, g — DI)V(r, g ] =0, (1.3)
Cs 8] = [D(NVe(r, t)ls = yod(r, s, = 5(r, 1), (1.4)
Es[@] = [D(V(r, )]s, & 1od(r, )ls] =0, (1.5)
Trl@] = ¢(r, 0)— (1) = 0. (1.6)

The usual notation is used and is close to the one established in (Haidar, 1983,
1997) but the formulation is meant to be not only internal-source—free but also with
a zero internal control matrix and a time-independent total-cross-section square
matrix Y (r) of GN dimension. ObviouslyAg represents the stationary diffusion
operator in the composite domaRof N subregions with an outer surfaBg Ag
andIlg are respectively the flux and current continuity operators on the common
interfacesS;, with § andS; representing the two different faces of the safne
of dimensionN’ not equal toN.. Eg, is the extrapolated boundary operator on the
composite outer surfack C S of dimensionM’ less tharN, i.e. UM, Sq = S,
while Cg, is the external beam boundary initial operator actmg%rc S of
dimensionM not equal toM’, i.e. UM | S, = S Itis also assumed here that

V = dlag [Ul Vo V3e e Ug]
and
V =diaglVVV..-.. V]

of GNdimension. IfJ(r, t) is the outward pointing t&, neutron current, thefig
is the initial operator acting iR and is stimulated by the time-dependent (and
possibly time-discontinuous) incoming external beam

p(r, t) = =J(r, t).

The + sign in Cg, and Eg, means+ or — when to an observer located inside
S Or Sq the outward normal t&, or S points to the left-hand-side or to the
right-hand-side respectively.

In this model we have, on the one hand, the transient neutron population,
described by the neutron flu@N-dimensional vectocb(r t), in the cold part of
the spectrum of thermal neutrons exhibiting a waveform-collective behavior that
reflects and refracts from subdomain bounda®&e®n the other hand, the transient
neutron population in the hot part of the spectrum can leak out preferentially from
various parts of the composite outer surf&eof the irradiated body. Moreover
the entire spectrum of thermal neutrons exhibit rethermalization (Haidar, 1982)
across boundaries of substantially different regions in the tumor.

Modern optimal control single-valued theory has witnessed an intensive ap-
plication over the last two decades in defining optimal regimens for the treatment
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of cancer (Nicolini, 1984; Zeitz and Nicolini, 1979)—where the state equations
are ordinary differential equations that constrain a single performance criterion.
With a vector of performance criteria, the techniques of vector optimization and
Pareto control have been employed (Zeitz and Nicolini, 1979), e.g. in the search
for optimal protocols in chemotherapy.

Optimization in neutron therapy of advanced cancers can be formulated with
the (1.1)—(1.6) partial differential constraints that contain some nonhomogeneous
initial boundary conditions. Solution of such problems calls for multivalued op-
timization techniques (Evans and Lions, 1980) like the penalized control (Lions,
1971) and penalized Pareto control (Lions, 1986).

Our purpose in this work is to analyze the naturally low ballistic index of slow
neutrons in therapeutic environments by single-valued optimization techniques. So
composite surface and composite region finite integral transforms (Haidar, 1997)
are applied in Section 2 to map the linear BVP (1.1)—(1.6) to an equivalent linear
IVP. This is subsequently employed in a dynamical system representation for the
ballistic index, and the latter is then optimized by means of Pontryagin’s maximum
principle. The resulting inverse problem formulation is designed to be capable of
indicating ways for a possible controllable improvement of this index through a
temporally tuned(t) multibeam irradiation,

p(r. 1) = a(r) b(t), (1.7)

of a certain parg§, of the composite outer surfa& of locally advanced tumors.
In this representation gi(r, t) there is anM x G matrix,

f(r) = [Aa(r) fa(r) Aa(r) -« fu(r) - - - A (D1 (1.8)

and a temporal control vectb(t) that is common for all neutron energy groups of
the G-dimensionala, (r) vectors. It is implicitly assumed in this model that each
of thesep, (r) neutron beam vectors are falling normally on the correspon8ing
subsurface. Therefone(r) represents a beam system spatial configuration matrix
that defines not only the position of the individual neutron beams but, in some way,
also their orientation with respect to the irradiated composite domain as a whole.
The main result of this work is Theorem 2.2, stating that for every spatial
configuration functionu(r) there exists, in an inverse problem formulation, an
optimal temporal control vectds®(t) satisfying an a priori system of linear ho-
mogeneous Volterra integral equations of the first kind and convolution type. In
Section 3 we show that a version of this newly advanced, temporally optimalized,
multibeam 3D irradiation therapy, with a linearized ballistic index, can result from
a shooting-type solution to a related semihomogeneous dual system of linear in-
tegral equations of the first kind. Section 4 deals with demonstrating the complete
state controllability of the addressed optimization problem and establishing a cri-
terion for the regional flux controllability of therapeutic neutrons.
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2. BALLISTIC INDEX OF NEUTRONS

The objective in slow neutron cancer therapy is to maximize the weighted
seminorm (in arL! setting) representing the regional neutron flex(€, t)) reac-
tion rate,

G
19 ®lleax, =Y [ YI06,¢. D aR 2.1)
g=1“R

in an advanced tumor subdomaiy over the irradiation period, while mini-
mizing it simultaneously over the surrounding young-tumor composite domain
UN, R, which is not supposed to require neutron therapy. I{e:fer) is the total
m'é'croscopic absorption cross-section of the neutrons aftthenergy group in
the jth region of the cancerous domain.

As for the dynamic control of irradiation, the tuned neutron beams on the same
accelerator are functionally operated by the (1.7) separated variable principle

Bt t) = () be®) k=1,2,3,....., M. (2.2)

A reasonable ballistic index of neutrons for advanced cancer therapy appears
to be one for which the ratio

TN T
/o iZl:H(ﬁi(t)llG,l;Z, dt//o ¢jt)llc, 1y, dt

i

is minimized. However, some of the mathematically feas&(le t) solution vec-

tors in a nonconstrained optimization process involving the above (weak) func-
tional, subject to the (1.1)—(1.6) state equations, may allow for situations where for
short intervals off inadmissible dose exposures may possibly be reached in some
subdomains of the composite system. Avoidance of such medically unacceptable
situations invokes the definition that follows for a rather safer (stronger) ballistic
index for these neutrons.

Definition 2.1. The dynamic ballistic index of slow neutrons in cancer therapy is

(L (N -
o)== /O D léi®lery, / Ip;(Ollc.ay, {dt (2.3)
i
Obviously this index, which is explicitly independent of the set of tuned

controls{bk(t)}M.,, must be minimized to improve the ballistic property of neu-
trons by an optimal control vectd®(t). Furthermore, for a nontuned steady state
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irradiation of the same cancer with the same neutronic multibeam configuration,
{1, we haveb(t) = 1,¥ k ande; (r, t) — ¢;(r) Vi. Hence

N
B = ldilo1y, / Ip; ey, (2.4)
i

represents the pertinent static ballistic index.
Denote now the group-regional reduced current of applied static neutron
beams as

Zi(r) =Va(r);r € S. (2.5)

Clearly, Zi(r) = Owhenr € § C S. Next define the multigroup composite
region finite integral transform,

N
H6 0, 0] = gm(®) = 3 fR oL -VigrdR  (26)
i=1 N

and the multigroup composite boundary surface finite integral transform,

M
Wiz =20 = [ 010V 1z ds 2.7)
i=1"YSp
wherezy, = Y™, zy and the associated
2= [ OF0)-V 2 ds (2.8)
Sp
in all of which
Oim(r) = Yim(r)/IYimlIn,2:v -1 (2.9)
and
Yim(r) = [Yiam(r) Yizm(r) Yigm(r) < - - Yiem(r)]"

are the functional eigenvectors of the auxiliary to the (1.1)—(1.6) vector matrix
eigen boundary value probler®iger, 1968; Haidar, 1983, 1997),

VD) Vi) + [ 32, (0 + amV | Yin() = 0,
rinR,i=1,2,3,..... . N; (2.10)

ronSj,i,j=1,2,3,..... ,N;
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0

0

D; (r)m Yim(r) = Dj(r)m ij(r),

ronS;,i,j=1,23,..... . N; (2.11)
Di(r 0 Yim(r) £+ Yim(r) =0

l()aTlp im(r) Yip im(r) =0,

ronSp,i=123,..... , M < N; (2.12)
D-(r)i Yim(r) & vig Yim(r) =0

i aniq im Yig Yim =Y

ronSyi=123,..... ,<N. (2.13)
The standing in (2.9)

1
2

N
YimlIn,2v-1 = {Z/ Ya(r) - V7HYin(r) dR (2.14)
i=1“R

is a composite region weighted norm of tHig, (r) vector, whileay, is the eigen-
value associated with this eigenvector.

The composite region integral transformg(t) and z,, have the following
respective inversion formulae:

HY Tom®] = $i(1, 1) = > pm(t) Oim(r) (2.15)
m=1
and
Wylz] = Zi(1) = 3 2 O1m(1). (2.16)
m=1
After observing that the,s are independent g (r, t), and that
@m(0) = §m(0) (2.17)
and
- T -1 d
;fR OV 2 O dR=0, (2.18)

by defining thanth harmonicpp,(t) of the composite surface inverse transformed
set of controls via

M
Pm(t) = ) Zmi bi(t), (2.19)
k=1
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we can state the theorem of Haidar (1997) in the following appropriately modified
form.

Theorem 2.1(Haidar, 1997). The group-regional solution vector of the compos-
ite region internal-source—free BVR.1)—(1.6)is

G )= gm(t) Oim(r), (2.20)
m=1
with coefficientgn,(t) that satisfy the system ODE
d
a wm(t) + Om (pm(t) = pm(t) m= 1, 2, 3, ..... , OO, (2.21)
subject to
om(0) =&, m=1,23,..... , 00. (2.22)

Direct solution of the uncoupled system IVP of the previous theorem for the
¢m(t) transforms and consideration of timth harmoniajy(t) of the exponentially
convoluted composite surface inverse-transformed set of controls, defined viz

t
0

M
an(®) = 3 Zm / expl-an(t — )] b(r) dr, (2.23)
k=1
leads to the lemma that follows.

Lemma?2.1. The group-regional solution vector of the composite region internal-
source—free BVIR1.1)—(1.6)is

G 1) = Oim(r){Em expl-amt] + dm(t)}. (2.24)
m=1

Proof: By direct integration of (2.21). O
Obviously att = 0, b(0) = 0 andg(r, 0) = 0. Therefore®(r, 0) = 0 and it
is possible to consider
om(0)=&n=0,Vm

in the previous lemma to establish the important relation between each regional
¢om(t) and the entire set of surfaegys:

@m(t) = gm(t), VM. (2.25)
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We may define now the weighted harmonic amplitudes,

the composite region transformed state vector,

B(t) = [a(t) @2(t) @a(t) - =+ - gm(t) - - - (O],

and the vector of composite surface inverse transformed set of controls,

P(t) = [Pa(t) p2(t) Pa(t) - -+ - pm(t) - - - PO,

in (2.3) to rewrite the optimal control problem of slow neutron therapy as the
following Ith order dynamical system.

1 T | N |
ming© = 2 [ 1] 3 Y w0 / 5™ Wi gn(®) | .
m=1

m=1 i=1
i#]

subject to (2.21) and (2.22), as state equations, with
m=1,23,..... = oo. (2.27)
Further definition of thé-dimensional vector,
Wj = [Wj1 Wj2 Wiz« Wijm - -wj.]T,

and the associated homogeneous composite region transformed system spectral
matrix,

A = diagey o ag -+ -+ - - ], (2.28)

allows representing (2.27) and (2.21) in vector matrix notation as

T T 1 N
minﬁ(p):/o L(@)dt:fo = ZWJ-@(t)/wJT@(t) dt,  (2.29)

i#]
subject to
®(t) = g(®, p) = —A®(t) + p(t) (2.30)
and to

P0)=£=0. (2.31)
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The Lagrangiah. (®) of this problem, which is a real function d® x [0, T]
thatis explicitly independent g, is further employed to construct its Hamiltonian
H(®, ¥, p),

H(®, ¥, p) = L(®) + (¥, g(®. p)), (2.32)
in which ¥ (t) is a transform costate vector satisfying the terminal conditions
¥(T)=17 (2.33)

and
(W, g(®,p)) =¥ g. (2.34)

We need moreover to introduce tiv x | rectangular coefficient matrix =
{anm}, of the following composite harmonic amplitudes as the entries

N
Bom =Y _(Win Wjm — Wim Wjp), (2.35)
iz
and thel x M rectangular functional matriXg(t) = E(t, Z) = {emk(t)}, with Z
equal to{zn} and the entries

emk(t) = Zmk expl—am(t)] (2.36)

to state the main result of this paper on optimal control vedi#(tg for temporally
tuned beaming by therapeutic neutrons.

Theorem 2.2. For every spatial configuration matrig(r) of the neutron beams,

the dynamic ballistic indeg(b) is minimized, subject to the satisfaction(dfl)—

(1.6), by an associated optimal temporal control vedifft) satisfying the homo-
geneous linear system of the firstkind, convolution-type Volterra integral equations

/t AE(t — 7)b(r) dr = 0. (2.37)
0

Proof: Applying Pontryagin’'s maximum principle (Kuo, 1980), based on the
equivalence

mpin(—\Il(T), P(T)) = mg;\x(\ll, 0),
to define the canonical system associated with (2.29)—(2.31), we have
. d
& =3 H(® ¥.p)=9(®,p) = —A2() +p(t) (2.38)

and

xi:——iH(qHI: )——[i (® )T-qf—il_(@) (2.39)
= o & PI= 5P 0% '
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Interestingly, note that unlike the transform state equations, which are linear
constant coefficient in bot#® andp, the transform costate equations,

b= AT - A®/T(W -8), (2.40)

are explicitly independent qf, while being nonlinearly dependent @ Now to
determine the form of the optimal control vecigi(t) corresponding to a given
£(r), we differentiateH (@, ¥, p) partially with respect tgg,(t) setting% H=
0,V mto arrive at
d
apo
Upon substitution of this result in (2.40) we have

H=®=0. (2.41)

A® = 0. (2.42)
Further consideration of (2.25) and (2.23) in (2.42) leads to

| M
Xpmzymfkmg%a—muﬁmf_on_123 M,

m=1 k=1
(2.43)
which rewrites in vector matrix notation as (2.37)0

Despite the fact that the convolution Volterra system (2.37) appears to be
well-posed, the problem of uniqueness of its solution cannot be expected to be
a simple one. This claim can straightforwardly be illustrated via an operational
solution of this system for optimal(t)s. Indeed if we define the Laplace transform
pair

bk(t) < Bk(S), (2.44)

we are able to represent the Laplace transformed (2.37) system as

B =123,..... M. 2.4

Let us introduce then thM x | functional matrixF(s) [equal to{ f,m(S)}]
with the entries
Anm

fnm(s) = S+a
m

(2.46)

and thd x M coefficient matrix

Z = {zmi} (2.47)
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to put the homogeneous system of functional equations (2.45) in the vector-matrix
form,

F(s) ZB(s) = 0. (2.48)

Obviously a necessary and sufficient condition for (2.48) to accept nontrivial
B(s) solutions would be

det[F(s) Z] =0,V s. (2.49)

Moreover, satisfaction of (2.49) does not guarantee uniqueness of the optimal
B(s) since it should still contain a number of free parameters @ks) < bk(t))
equalling to

M-rank [F(s) Z], (2.50)

which varies withs and cannot be less than one.

Proposition 2.1. For L!-solvability of (2.37)the dual condition t¢2.49)should
be satisfied, i.e., a certain generalizeet AE should not vanish.

Proof: It is quite possible to effectively replace the condition (2.49), when the
imageF(s) Z is regular enough, by some weak form in thelomain. Such a
form would define a certain unique, but generalized, corresponding solution in
thet domain. Actually, the pertaining uniqueness of solution to the scalar form of
equations like (2.37) has previously been thoroughly investigated by Titchmarsh
(Bukhgeim, 1999). For the case of square systems like (2.37), Asanov employed in
1998 the notions of convolution algebra to generalize the theorem of Titchmarsh to
establish the necessary and sufficient conditions for the uniqueness of the solution
on the commutative ring.

Following Asanov (1998), let(t) be anm-dimensional vector function with
the norm||x||. Denote then b, (1) the space of continuous vector functios),
defined onl = [0, T] or R* = [0, oc], which is endowed with the norm

IXllc = maxix|. (251)

Moreover, for any two locally independent elemeats), b(t) € C1(1) N L (1),
it is possible to define the convolution (con) multiplication

t
wwmhﬁauﬂmwme

PresumablylLL (1) is a commutative ring relative to this multiplication.
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Let also Cyn(l) denote the set of alin x n matrices to invoke the con
multiplication:

TI(t) * U(t) = V(t)

for (m x 1) by (I x n) matrices, yielding the/(t) [equal to{vj; (t)}] matrix of
(m x n) dimension with the elements

|
Vij (1) = Y mi(t) * Uy (1)
k=1

In a similar fashion, the con determinant (con.det) is defined for a square
matrix U equal to{u;; (t)} as

m
con.det(t) = > " ujj (t) = Uj; (1),

j=1
with Uj; (t) (equal to 1)1 M;j (t)) and M;; (t) as respectively the con algebraic
supplement and the con.minor of the elem&ptt) in anyith row.

By assuming the null space bf(t) (equal toAE(t)) to bep(I") and recog-
nizing that
I'(t) € Cum(l),

it is possible now to state Asanov’s theorem (Asanov, 1998) for the system (3.27).
The system

C'(t)xb(t)=0
has a unique solution ip(I") N Lﬁ,c(l )iff 3 no numbe® € | such that
con.def’(t) =0 t < (0,9),
i.e. if the con.def’(t) € Cy(l) is a reversible element relative to thanultipli-
cation (1). O

The question about whai(r) is to be considered in optimal therapy remains
open but may also be resolved from an analysis of the corresponding static ballistic
index. So if

M
Cn = Zmk (2.52)
k=1

and

c=[C1CC3--+Cn---G]", (2.53)
it is not difficult to illustrate that

orm(t) = Gm(t) — :—: vm. (2.54)
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By stationarizing (2.30) and considering (2.54), it is possible to write the
following expression forg(1), which corresponds to the same geometrical ar-
rangement(r)) of the neutron beaming system addressed by (2.29)—(2.31):

| N

|
B =) w/ -A‘lc/z wj - Ac. (2.55)
m=1

m=1 i=1
i#]

3. PROBLEM WITH LINEARIZED BALLISTIC INDEX

The abovementioned nonuniqueness of the optB{s) and the problem of
existence of an analytiB°(s) is expected to enhance any inherent instabilities in
the solution to (2.37). This may also be attributed to the fact that both the costate
equations (2.40) and the Hamiltonian

N
H@, ¥, p)=-T - A+ T -p+> W -o/Tw]-& (3.1
izt
are nonlinear inb(t). As a linear function op(t) this Hamiltonian has an absolute
minimum along the optimal trajectoriéB®(t) no matter what the nature of the
constraint set fop(t) may possibly be.
The fact that the state equations (2.30) are linear in Botndp indicates
that the above noted instabilities are not of neutron physical nature but are purely
mathematical consequences of the nonlinear formulation (2.29) for the Lagrangian,

1 N
L(@) == ;wf - B(t)/w] - B(), (3.2)
i#]
of the optimal control problem. All of this motivates us to try to relax the nonlin-
earity (Lee, 1966) i (®) as a possible means for obtaining a unique opthfi)
for every configuration matrix(r) of the irradiating beams. Such a motivation is
enhanced further by observing the previous generic nonuniqueness of the solution
to (2.48) and to its inverse Laplace-transformed system (2.37). Clearly by virtue
of Lerch’s lemma, for any assumed anal\Bi(s) image one can straightforwardly
define a unigue preimadgt). Moreover, before stating the main result of this
section, we introduce the following notation:

T
f Om(t) dt = em (3.3)
0
and

T T —
/ w - ®(t) dt=Tw/ - / ®(t) dt=Tw - & =h;, (3.4)
0 0
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where hi* is the value ofh; that corresponds to a certain optimal trajectory
d*(1).

Theorem 3.1. The linearized dynamic ballistic indek(b) is minimized for a
givenfi(r) by an optimal temporad*(t) vector satisfying the dual system of linear
integral equations

/tA E(t — 7)b(z)dr =0 (3.5)
0

T pt
//E(t—t) b(z) dr dt= &, (3.6)
0 0

in whiché is the solution vector to the linear programming problem

| N

max; = Z |:ij - Zwim} em (3.7)

m=1 i=1
i#]

subject to

|
> Wimem=h® <or>h i=1,23..... <N:i #j. (3.8)

m=1

Proof: Reconsidep(b) in the form

i 1 ! T . T T
ming(p) =1— ?fo w; -<I>(t)—Zl:wi - B(t) wj - ®(t) ¢ dt,

i#]
subject to (2.30) and (2.31).

Assume then the existence of a certain optimal control véétigt) <> B(O)(s)
derivable from (2.48) when

IdetFF(s)z]1 < |8

via a system-conditioning scheme as, e.g.

(3.9)

BW(s) = 21 F(s) 8"
and

@y — 7117y 7@

B (s)=Z""F ()6 ',

with 5 = 59, v k. The entriesB{’)(s) are determined as the linear Richardson
extrapolation-like limits

B(s) = [BI(s)5 — B(s)8]/[88) — )] (3.10)
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Defining then the averaged numeric vects? to approximates(b), with 8(p),
we have

T N _
B(p) ~ 1— %/o {w} @O - 3wl -<I>(°)(t):| dyTwl -2, (3.11)

i#]

Clearly then the minimization g#(b) in the context of (2.29)—(2.31) is according
to (3.11) and (2.25), identical to

| N T
maxz = Y | Wim— Y _ Wim / qO(t) dt (3.12)
i=1 0

m=1 i=1
i#]

subject to
| T
Zwim/ 0Oy dt=h® i=1,2,3.....,N. (3.13)
m=1 0

Theh of (3.8) can be taken either equalhﬁ) or from the satisfaction of
h =Tw - A~ (3.14)

pertinent inB(1) associated with the same geometriaél) setting of the beams.
Replacement of (3.12) and (3.13) by (3.7) and (3.8) will always be validdb(ta
vector that is close tqO(t). O

4. BALLISTIC INDEX CONTROLLABILITY

The term controllability means the possibility of driving any regional neutron
flux inside the tumor back to its initial value in some finite time. Therefore estab-
lishment of the controllability of the ballistic index considered above is a further
proof that therapeutic neutrons are superiop t@ays or charged particles in their
response to temporal changes of their external beams.

It is well known that stability and controllability of the system of state equa-
tions (2.30) is closely tied to the nature of thg elements in itsA matrix. We
emphasize here that o{ufm}'m:l set represents the eigenvalue spectrum of a com-
posite region BVP (2.10)—(2.13), which is after all a system Sturm Liouville 3D
problem. As such these eigenvalues should satisfy the condition

om >0,V m. (4.2)

However, the 3D dimensionality of the BVP for thesgs is supposed to cause pos-
sible degeneracies (Knoble and McLaughlin, 1994) in some of these eigenvalues.



Optimization in Composite Surface Transformed Systems 125

Moreover, the satisfaction of (4.1) by tliam}'m=1 set happens to guarantee a
stability, in the sense of Lyaponov (Kalman, 1964), for the solution to the (2.30)
system of transformed neutronic state equations. Therefore any emerging instabili-
ties during the course of finding the optimal control vector to the dynamical system
(2.29)—(2.31) should not be traced back to the pertinent transformed neutronic state
equations.

Furthermore, regardless of the nonuniqueness of the local (and even the quasi-
global) optimal control vector to the dynamical system (2.29)—(2.31), its state
controllability turns out to be independent of the nature of{ﬂp@}'mzl eigenvalue
spectrum. The controllability of the ballistic indgXb) directly follows the con-
trollability of regional flux vector, which is the controllability of practical interest,
and this may differ from the rather abstract state controllability.

Definition 4.1(Kuo, 1980). The dynamical system defined by (2.30) and (2.31)
is completely state controllableifis a piecewise continuoyxt) defined over the
intervalt; <t < t; that transforms the neutron diffusion process from an initial
state®(t;) to a final stateb(t;) in the intervalt; —t;.

Lemma 4.1. For the system defined 1§2.30)and (2.31)to be completely state
controllable it is sufficient (but not necessary) that the spectrum of eigenvalues of
the homogeneous BR.10)—(2.13)s nondegenerate.

Proof: By observing that the necessary and sufficient condition for complete
controllability [19] of (2.30) and (2.31),

rank(l: —A:A%:i..... C(=1)mAM C(=1) A =1,

can always be satisfied and even fdr matrices with repeated diagonal
elements. O

Theorem 4.1. For the system defined [ff.30)and (2.31)to be regional flux

controllable it is sufficient (but not necessary) that the spectrum of eigenvalues of

the homogeneous BYR.10)—(2.13)s nondegenerate.

Proof: Considerthe regional flux expansion (2.15) and define the regional matrix
Ei = (0i1(r) ©i2(r) Oiz(r) - -+ - - - Oim(r)------ ©; (r)).

Obviously the nondegeneracy of the eigenvalues mentioned in the theorem guar-
antees linear independence of the column vectorg;oiih a sufficient but not
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necessary sensé,. The necessary and sufficient condition for complete regional
flux controllability of (2.30) and (2.31),

rank=; i —SiA T E A% ... CEDMEAM (=D A =1,

can then always be satisfied

Clearly the satisfaction of the conditions of this theorem can serve as an ana-
lytical and computational sufficiency criterion for the regional flux controllability
of therapeutic neutrons.

5. CONCLUSION

Optimalized neutron therapy of advanced cancers calls for extremizing their
ballistic index subject to the satisfaction of the associated mixed initial boundary
value problem of multigroup neutron diffusion. In this work, composite surface
integral transforms were demonstrated so as to enable reducing this optimization
problem to a dynamical system that is optimally controlled (with temporally tuned
external neutron beams) by means of Pontryagin’s maximum principle.

As for practicability of this rather novel modality for neutron therapy, the
more versatile is the composition of the tumor subdomains the less likely that
the associated®;im(r)}l,_, set of vectorsyi, may become linearly dependent.
The advanced criterion for controllability indicates remarkably that for such tu-
mors the ballistic index of therapeutic neutrons should be expected to be more
controllable; given of course that the configurations of the irradiating neutron
beams are the same.

APPENDIX: PRELIMINARIES ON NEUTRON THERAPY

Intherapy with neutrons, protons, or heavy ions, a specific problem requires to
be taken into account because of the fact that their relative biological effectiveness
(RBE) is significantly different and not unity. The RBE of fast neutrons varies
within wide limits, depending on the neutron energy spectrum, dose, biological
system, and endpoint. For proton beams, the RBE ranges within smaller limits,
(about 1.0-1.2). Furthermore, large variations of intrinsic radiosensitivities among
patients with identical tumor type make it quite difficult to select and classify
patients for specific radiotherapy schedules and protocols. This is basically because
cells in the different stages of the cell cycle in a tumor differ in radiosensitivity
with S-phase cells (the most radioresistant) and G2/M cells (most radiosensitive),
and the DNA content of the cells in these different stages also differ. DNA content
and cellular proliferation kinetics could actually have an influence on intrinsic
radiosensitivity and could serve as predictors of radiation response. This response
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is found by radiotherapy experience to depend more on tumor histology and stage
than on site of origin.

High energy proton beam radiotherapy of certain tumors is nowadays a tech-
nologically advanced and effective means in the selective destruction of cancer
cells. Its rational can be traced back to a paper published in 1946 by R. Wilson
(1946) who recognized that protons, with their well-defined range limited scatter-
ing potential, could be an ideal radiation modality for improving the physical dose
localization to a tumor target.

The main advantage of using proton beams in radiation therapy over x rays,
y rays, electrons, or neutrons is the pertinent ability to use their sharp distal falloff
and lateral penumbra to shape the dose distribution very precisely to the tumor
volume, thereby sparing adjacent normal sensitive structures. However results of
Mills et al. (1992) and Larsson (1995) indicate that patients with small disease,
either unsuitable for or remaining after surgery, are the ones that will benefit
most from neutron therapy. Neutron therapy seem fortunately to be an effective
treatment for these negatively selected patients, and it remains the treatment of
choice (Stannaret al, 1995) for patients with advanced irresectable salivary
gland tumors and for those with macroscopic residual or questionable resectable
tumors. They can also be used for the treatment of technically resectable tumors of
head and neck, for cosmetic and logistic considerations, and for some metastatic
neutron-responsive tumors.

Other methods that include therapy with selectively accumulating radioiso-
topes (Haidar, 1992) such &8l and *°Tc, injected colloidal radioactive metals
like 1%8Au and®3zn, or artificially radioactive suspensions containing &%.or
177Lu have long been in practice (Hahn and Sheppard, 1948). A common problem
among all of these alternative methods has been in their nonuniformity of distribu-
tion inside some kinds of cancers. Such nonuniformity results with overdosage in
certain regions of the tumor and negligibly low doses in others. Neutron therapy is
expected to be more effective in such situations and could in principle be carried out
simultaneously with one or more of these alternatives, whose implementation may
affect the established neutron flux inside the tumor in various ways (Haidar, 1997).

Effectiveness of neutron therapy may also be intensified regionally by uptak-
ing in the tumor a biologically acceptable strong neutron absorbetlkavhich
has a cross-section of 3840 barns for thermal neutron cafi(e, «)’Li. The
reaction releases 2.8 MeV, including a 0.5 Mg\fay. The ranges of the and
’Li are 9 and 5um respectively, about the size of the biological cell. It was sug-
gested as early as 1936 that if a tumor could be loadediBtand irradiated with
thermal neutrons, energy would be released in the tumor cells. Three problems
of conventional radiotherapy would then be solved by this BNCT (boron neutron
capture therapy): attacking the tumor precisely, even on a microscopic scale, con-
forming the dose to tumor cells; and treating metastases. It is well documented
(see e.g., Hart and Fidler, 1981) that one of the most formidable obstacles to the
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successful treatment of metastatic diseases is the fact that cells of a tumor are
biologically heterogeneous.

Most neutron production methods generate high-energy neutrons, which, not
being captured b¥’B, irradiate indiscriminately; but thermal neutrons cause skin
damage, and penetrate only a few cms in tissues. The best compromise energy is
0.1-10 keV. Such neutrons penetrate with little damage, and are thermalized in
tissue. High enough fluxes of such filtered slow neutron beams have become avail-
able for therapeutic use only during the last decade; in a way widening the horizons
for this unique kind of radiotherapy. This situation, and important recent chemical
and biological developments, contribute to the renewed interest (McMiehakl|
1995) in the classical idea of BNCT. This modality, evidently dependent on the
ability of used boron compounds to penetrate in tumor tissue, is very likely to be
more useful for treatment of small local metastases and infiltrating tumor cells than
in radiotherapy for solid tumors. There has thus been a need for development of
improved boron-carriers, and important progress is being made (Larsson, 1995).

In order to improve uptake and specificity of boron in tumor cells, some new
approaches in synthesizing boron containing compounds, like some nido deriva-
tives of bL-4-carboranyl phenylalnine, have been followed. Another strategy has
been to couple the boron containing compound to a tumor-affine protein (anti-
body, receptor ligand, liposomes etc.). Furthermore, boron can be localized in the
DNA of target cells, when coupled to a pyrimidine derivative or to a DNA dye,
respectively. Many other compounds have been synthesized, each using a different
approach in binding the tumor cells witAB. From the chemistry point of view,
BNCT is not yet optimized, and progress and success of this therapy mode depends
strongly on the progress in different fields in biology, physics, chemistry medicine
and mathematical modelling.
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