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Composite surface finite integral transforms are applied to formulate the optimal ballistic
property for a temporally tuned multibeam neutron cancer 3D therapy as a single-valued
dynamical system. By invoking Pontryagin’s maximum principle, with the operation
functions of the beams constituting the control vector, it is proved, in an inverse prob-
lem formulation, that for every spatial configuration of the neutron beams, there exists
an optimal temporal control vector satisfying an a priori system of linear homoge-
neous Volterra integral equations of the first kind and convolution type. A version
of this newly advanced, temporally optimalized, multibeam 3D irradiation therapy,
with a linearized ballistic property, is shown to result from a shooting-type solution
to a related, semihomogeneous dual system of linear integral equations of the first
kind. A criterion for the controllability of this optimization problem has also been
established.

1. INTRODUCTION

Among the variety of possible radiations usable these days in cancer therapy,
namely x rays,γ rays, electrons, protons, neutrons, heavy ions,π mesons, it is
generally agreed that high energy protons exhibit the best ballistic index, i.e. the
best ratio of the dose delivered to the tumor, compared with the dose delivered to
the neighboring tissues.

However the effectivity of proton therapy appears to weaken for certain
advanced irresectable tumors (Millset al., 1992), whereas neutron therapy happens
to be more effective than other forms of radiation, because it has the propensity to
kill advanced tumor cells low in oxygen content. Despite their relatively low bal-
listic index, neutrons are established to be primarily indicated for a well-defined
subset of tumors that are mainly locally advanced and irresectable. The locally
advanced tumor part of these cancers is often globally surrounded by the younger
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Fig. 1. Sketch to illustrate the human body as a composite cancerous region that is
irradiated by temporally tuned external neutron beams.

tumor tissues that may not require neutron therapy or can tolerate only a fraction
of the neutron dose admissible by the advanced disease parts.

It is widely known that temporal changes are practically of no interest inγ ray
and charged particle treatment, because their relaxation times inside the tumor
could be in orders of magnitude shorter than the practicable switching times of
their beams. Distinctively, neutron transport in multiregional hydrogenous domains
has a stronger response to temporal changes. In fact neutronic relaxation lengths
are comparable (Haidar, 1982) to the sizes of some subdomains, and neutronic
relaxation times may be comparable (Fujino and Sumita, 1970) to the switching
times of modern cyclotrons.

The transient diffusion of slow neutrons during therapy in a finite composite
region, like that of an advanced cancer (sketched in Fig. 1) has a complex physical
model. It is formulated as a mixed boundary initial value problem in the energy
multigroupG approximation as

AR[ Eφ] =
[
∇ ·D(r )∇ +

∑
(r )
] Eφ(r , t) = V̂−1 ∂

∂t
Eφ(r , t), (1.1)
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3Sc[ Eφ] = [ Eφ(r , t)|S+c − Eφ(r , t)|S−c
] = 0, (1.2)

5Sc[ Eφ] = [D(r )∇ Eφ(r , t)|S+c − D(r )∇ Eφ(r , t)|S−c
] = 0, (1.3)

CSp[ Eφ] = [D(r )∇ Eφ(r , t)|Sp ± γ0 Eφ(r , t)|Sp

] = Eρ(r , t), (1.4)

ESq[ Eφ] = [D(r )∇ Eφ(r , t)|Sq ± γ0 Eφ(r , t)|Sq

] = 0, (1.5)

TR[ Eφ] = Eφ(r , 0)− Eχ (r ) = 0. (1.6)

The usual notation is used and is close to the one established in (Haidar, 1983,
1997) but the formulation is meant to be not only internal-source–free but also with
a zero internal control matrix and a time-independent total-cross-section square
matrix

∑
(r ) of GN dimension. ObviouslyAR represents the stationary diffusion

operator in the composite domainR of N subregions with an outer surfaceSo.3Sc

and5Sc are respectively the flux and current continuity operators on the common
interfacesSc, with S+c andS−c representing the two different faces of the sameSc

of dimensionN ′ not equal toN. ESq is the extrapolated boundary operator on the
composite outer surfaceSq ⊂ S of dimensionM ′ less thanN, i.e.∪M ′

r=1Sr q = Sq,
while CSp is the external beam boundary initial operator acting onSp ⊂ S of
dimensionM not equal toM ′, i.e.∪M

k=1 Skp = Sp. It is also assumed here that

V = diag [ν1 ν2 ν3 · · · · · νG]

and

V̂ = diag [V V V · · · · ·V]

of GNdimension. IfJ(r , t) is the outward pointing toSo neutron current, thenTR

is the initial operator acting inR and is stimulated by the time-dependent (and
possibly time-discontinuous) incoming external beam

Eρ(r , t) = −J(r , t).

The± sign in CSp and ESq means+ or − when to an observer located inside
Skp or Sr q the outward normal toSkp or Sr q points to the left-hand-side or to the
right-hand-side respectively.

In this model we have, on the one hand, the transient neutron population,
described by the neutron fluxGN-dimensional vectorEφ(r , t), in the cold part of
the spectrum of thermal neutrons exhibiting a waveform-collective behavior that
reflects and refracts from subdomain boundariesSc. On the other hand, the transient
neutron population in the hot part of the spectrum can leak out preferentially from
various parts of the composite outer surfaceSo of the irradiated body. Moreover
the entire spectrum of thermal neutrons exhibit rethermalization (Haidar, 1982)
across boundaries of substantially different regions in the tumor.

Modern optimal control single-valued theory has witnessed an intensive ap-
plication over the last two decades in defining optimal regimens for the treatment
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of cancer (Nicolini, 1984; Zeitz and Nicolini, 1979)—where the state equations
are ordinary differential equations that constrain a single performance criterion.
With a vector of performance criteria, the techniques of vector optimization and
Pareto control have been employed (Zeitz and Nicolini, 1979), e.g. in the search
for optimal protocols in chemotherapy.

Optimization in neutron therapy of advanced cancers can be formulated with
the (1.1)–(1.6) partial differential constraints that contain some nonhomogeneous
initial boundary conditions. Solution of such problems calls for multivalued op-
timization techniques (Evans and Lions, 1980) like the penalized control (Lions,
1971) and penalized Pareto control (Lions, 1986).

Our purpose in this work is to analyze the naturally low ballistic index of slow
neutrons in therapeutic environments by single-valued optimization techniques. So
composite surface and composite region finite integral transforms (Haidar, 1997)
are applied in Section 2 to map the linear BVP (1.1)–(1.6) to an equivalent linear
IVP. This is subsequently employed in a dynamical system representation for the
ballistic index, and the latter is then optimized by means of Pontryagin’s maximum
principle. The resulting inverse problem formulation is designed to be capable of
indicating ways for a possible controllable improvement of this index through a
temporally tunedb(t) multibeam irradiation,

Eρ(r , t) = µ̂(r ) b(t), (1.7)

of a certain partSp of the composite outer surfaceSo of locally advanced tumors.
In this representation ofEρ(r , t) there is anM × G matrix,

µ̂(r ) = [ Eµ1(r ) Eµ2(r ) Eµ3(r ) · · · Eµk(r ) · · · EµM (r )]T , (1.8)

and a temporal control vectorb(t) that is common for all neutron energy groups of
theG-dimensionalEµk(r ) vectors. It is implicitly assumed in this model that each
of theseEµk(r ) neutron beam vectors are falling normally on the correspondingSkp

subsurface. Therefore ˆµ(r ) represents a beam system spatial configuration matrix
that defines not only the position of the individual neutron beams but, in some way,
also their orientation with respect to the irradiated composite domain as a whole.

The main result of this work is Theorem 2.2, stating that for every spatial
configuration function ˆµ(r ) there exists, in an inverse problem formulation, an
optimal temporal control vectorbo(t) satisfying an a priori system of linear ho-
mogeneous Volterra integral equations of the first kind and convolution type. In
Section 3 we show that a version of this newly advanced, temporally optimalized,
multibeam 3D irradiation therapy, with a linearized ballistic index, can result from
a shooting-type solution to a related semihomogeneous dual system of linear in-
tegral equations of the first kind. Section 4 deals with demonstrating the complete
state controllability of the addressed optimization problem and establishing a cri-
terion for the regional flux controllability of therapeutic neutrons.
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2. BALLISTIC INDEX OF NEUTRONS

The objective in slow neutron cancer therapy is to maximize the weighted
seminorm (in anL1 setting) representing the regional neutron flux (Eφ j (r , t)) reac-
tion rate,

‖ Eφ j (t)‖G,1;
∑

j
=

G∑
g=1

∫
Rj

∑g

j
(r ) Eφ j (r , t) dR, (2.1)

in an advanced tumor subdomainRj over the irradiation periodT , while mini-
mizing it simultaneously over the surrounding young-tumor composite domain
∪N

i=1
i 6= j

Ri , which is not supposed to require neutron therapy. Here
∑g

j (r ) is the total
macroscopic absorption cross-section of the neutrons of thegth energy group in
the j th region of the cancerous domain.

As for the dynamic control of irradiation, the tuned neutron beams on the same
accelerator are functionally operated by the (1.7) separated variable principle

Eρk(r , t) = Eµk(r ) bk(t) k = 1, 2, 3,. . . . . , M. (2.2)

A reasonable ballistic index of neutrons for advanced cancer therapy appears
to be one for which the ratio∫ T

0

N∑
i=1
i 6= j

‖ Eφi (t)‖G,1;
∑

i
dt

/∫ T

0
‖ Eφ j (t)‖G,1;

∑
j
dt

is minimized. However, some of the mathematically feasibleEφ(r , t) solution vec-
tors in a nonconstrained optimization process involving the above (weak) func-
tional, subject to the (1.1)–(1.6) state equations, may allow for situations where for
short intervals ofT inadmissible dose exposures may possibly be reached in some
subdomains of the composite system. Avoidance of such medically unacceptable
situations invokes the definition that follows for a rather safer (stronger) ballistic
index for these neutrons.

Definition 2.1. The dynamic ballistic index of slow neutrons in cancer therapy is

β(b) = 1

T

∫ T

0

 N∑
i=1
i 6= j

‖ Eφi (t)‖G,1;
∑

i

/
‖ Eφ j (t)‖G,1;

∑
j

 dt. (2.3)

Obviously this index, which is explicitly independent of the set of tuned
controls{bk(t)}Mk=1, must be minimized to improve the ballistic property of neu-
trons by an optimal control vectorbo(t). Furthermore, for a nontuned steady state
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irradiation of the same cancer with the same neutronic multibeam configuration,
{ Eµk(r )}Mk=1, we havebk(t) = 1,∀ k and Eφi (r , t)→ Eφi (r ) ∀ i . Hence

β(1) =
N∑

i=1
i 6= j

‖ Eφi ‖G,1;
∑

i

/
‖ Eφ j ‖G,1;

∑
j

(2.4)

represents the pertinent static ballistic index.
Denote now the group-regional reduced current of applied static neutron

beams as

Z i (r ) = V Eµi (r ); r ∈ So. (2.5)

Clearly, Z i (r ) = 0 whenr ∈ Sq ⊂ So.Next define the multigroup composite
region finite integral transform,

HN [ Eφi (r , t)] = ϕm(t) =
N∑

i=1

∫
Ri

2T
im(r ) · V−1 Eφi (r , t) dR, (2.6)

and the multigroup composite boundary surface finite integral transform,

WN [Z i (r )] = zm =
M∑

i=1

∫
Si p

2T
im(r ) · V−1 Z i (r ) dS, (2.7)

wherezm =
∑M

i=1 zmi and the associated

zmi =
∫

Si p

2T
im(r ) · V−1 Z i (r ) dS, (2.8)

in all of which

2im(r ) = Y im(r )/‖Y im‖N,2;V−1 (2.9)

and

Y im(r ) = [Yi 1m(r ) Yi 2m(r ) Yi 3m(r ) · · · · · YiGm(r )]T

are the functional eigenvectors of the auxiliary to the (1.1)–(1.6) vector matrix
eigen boundary value problem (Ölçer, 1968; Haidar, 1983, 1997),

∇ · Di (r )∇Y im(r )+
[∑

i
(r )+ αmV−1

]
Y im(r ) = 0,

r in Ri , i = 1, 2, 3,. . . . . , N; (2.10)

Y im(r ) = Y jm(r ),

r on Si j , i , j = 1, 2, 3,. . . . . , N;
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Di (r )
∂

∂ni j
Y im(r ) = D j (r )

∂

∂ni j
Y jm(r ),

r on Si j , i , j = 1, 2, 3,. . . . . , N; (2.11)

Di (r )
∂

∂ni p
Y im(r )± γi p Y im(r ) = 0,

r on Si p, i = 1, 2, 3,. . . . . , M < N ; (2.12)

Di (r )
∂

∂ni q
Y im(r )± γi q Y im(r ) = 0,

r on Si q, i = 1, 2, 3,. . . . . , <N . (2.13)

The standing in (2.9)

‖Y im‖N,2;V−1 =
{

N∑
i=1

∫
Ri

YT
im(r ) · V−1 Y im(r ) dR

} 1
2

(2.14)

is a composite region weighted norm of theY im(r ) vector, whileαm is the eigen-
value associated with this eigenvector.

The composite region integral transformsϕm(t) andzm have the following
respective inversion formulae:

H−1
N [ϕm(t)] = Eφi (r , t) =

∞∑
m=1

ϕm(t) 2im(r ) (2.15)

and

W−1
N [zm] = Z i (r ) =

∞∑
m=1

zm 2im(r ). (2.16)

After observing that theαms are independent ofEρk(r , t), and that

ϕm(0)= ξm(0) (2.17)

and
N∑

i=1

∫
Ri

2T
im(r ) · V−1 d

dt
2in(r ) dR= 0, (2.18)

by defining themth harmonicpm(t) of the composite surface inverse transformed
set of controls via

pm(t) =
M∑

k=1

zmk bk(t), (2.19)
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we can state the theorem of Haidar (1997) in the following appropriately modified
form.

Theorem 2.1(Haidar, 1997). The group-regional solution vector of the compos-
ite region internal-source–free BVP(1.1)–(1.6)is

Eφi (r , t) =
∞∑

m=1

ϕm(t) 2im(r ), (2.20)

with coefficientsϕm(t) that satisfy the system ODE

d

dt
ϕm(t)+ αm ϕm(t) = pm(t) m= 1, 2, 3,. . . . . ,∞, (2.21)

subject to

ϕm(0)= ξm m= 1, 2, 3,. . . . . ,∞. (2.22)

Direct solution of the uncoupled system IVP of the previous theorem for the
ϕm(t) transforms and consideration of themth harmonicqm(t) of the exponentially
convoluted composite surface inverse-transformed set of controls, defined viz

qm(t) =
M∑

k=1

zmk

∫ t

0
exp[−αm(t − τ )] bk(τ ) dτ, (2.23)

leads to the lemma that follows.

Lemma 2.1. The group-regional solution vector of the composite region internal-
source–free BVP(1.1)–(1.6)is

Eφi (r , t) =
∞∑

m=1

2im(r ){ξm exp[−αmt ] + qm(t)}. (2.24)

Proof: By direct integration of (2.21). ¤

Obviously att = 0, b(0)= 0 and Eρ(r , 0)= 0. ThereforeΦ(r , 0)= 0 and it
is possible to consider

ϕm(0)= ξm = 0,∀ m

in the previous lemma to establish the important relation between each regional
ϕm(t) and the entire set of surfacezmks:

ϕm(t) = qm(t), ∀ m. (2.25)
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We may define now the weighted harmonic amplitudes,

w jm = ‖Θ jm‖G,1;
∑

j
=

G∑
g=1

∫
Rj

∑g

j
(r ) Θ jm(r ) dR m= 1, 2, 3,. . . . . , l →∞,

(2.26)

the composite region transformed state vector,

Φ(t) = [ϕ1(t) ϕ2(t) ϕ3(t) · · · ·ϕm(t) · · · ·ϕl (t)]
T ,

and the vector of composite surface inverse transformed set of controls,

p(t) = [ p1(t) p2(t) p3(t) · · · · pm(t) · · · · pl (t)]
T ,

in (2.3) to rewrite the optimal control problem of slow neutron therapy as the
following l th order dynamical system.

minβ(p) = 1

T

∫ T

0


 l∑

m=1

N∑
i=1
i 6= j

wim ϕm(t)

/ l∑
m=1

w jm ϕm(t)

 dt,

subject to (2.21) and (2.22), as state equations, with

m= 1, 2, 3,. . . . . , l →∞. (2.27)

Further definition of thel -dimensional vector,

w j = [w j 1 w j 2 w j 3 · · · ·w jm · · · ·w jl ]
T ,

and the associated homogeneous composite region transformed system spectral
matrix,

3 = diag[α1 α2 α3 · · · ·αm · · · ·αl ], (2.28)

allows representing (2.27) and (2.21) in vector matrix notation as

minβ(p) =
∫ T

0
L(Φ) dt=

∫ T

0

1

T

 N∑
i=1
i 6= j

wT
i ·Φ(t)

/
wT

j ·Φ(t)

 dt, (2.29)

subject to

Φ· (t) = g(Φ, p) = −ΛΦ(t)+ p(t) (2.30)

and to

Φ(0)= Eξ = 0. (2.31)
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The LagrangianL(Φ) of this problem, which is a real function onRl × [0, T ]
that is explicitly independent ofp, is further employed to construct its Hamiltonian
H (Φ, Ψ, p),

H (Φ, Ψ, p) = L(Φ)+ 〈Ψ, g(Φ, p)〉, (2.32)

in whichΨ(t) is a transform costate vector satisfying the terminal conditions

Ψ(T) = Eη (2.33)

and

〈Ψ, g(Φ, p)〉 = ΨT · g. (2.34)

We need moreover to introduce theM × l rectangular coefficient matrix,A =
{anm}, of the following composite harmonic amplitudes as the entries

anm =
N∑

i=1
i 6= j

(win w jm − wim w jn), (2.35)

and thel × M rectangular functional matrix,E(t) = E(t, Z) = {emk(t)}, with Z
equal to{zmk} and the entries

emk(t) = zmk exp[−αm(t)] (2.36)

to state the main result of this paper on optimal control vectorsbo(t) for temporally
tuned beaming by therapeutic neutrons.

Theorem 2.2. For every spatial configuration matrix̂µ(r ) of the neutron beams,
the dynamic ballistic indexβ(b) is minimized, subject to the satisfaction of(1.1)–
(1.6), by an associated optimal temporal control vectorbo(t) satisfying the homo-
geneous linear system of the first kind, convolution-type Volterra integral equations∫ t

0
A E(t − τ ) b(τ ) dτ = 0. (2.37)

Proof: Applying Pontryagin’s maximum principle (Kuo, 1980), based on the
equivalence

min
p
〈−Ψ(T), Φ(T)〉 = max

p
〈Ψ, g〉,

to define the canonical system associated with (2.29)–(2.31), we have

Φ· = ∂

∂Ψ
H (Φ, Ψ, p) = g(Φ, p) = −ΛΦ(t)+ p(t) (2.38)

and

Ψ· = − ∂

∂Φ
H (Φ, Ψ, p) = −

[
∂

∂Φ
g(Φ, p)

]T

·Ψ− ∂

∂Φ
L(Φ). (2.39)
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Interestingly, note that unlike the transform state equations, which are linear
constant coefficient in bothΦ andp, the transform costate equations,

Ψ· = ΛΨ− AΦ/T
(
wT

j ·Φ
)2

, (2.40)

are explicitly independent ofp, while being nonlinearly dependent onΦ. Now to
determine the form of the optimal control vectorpo(t) corresponding to a given
µ̂(r ), we differentiateH (Φ, Ψ, p) partially with respect topo

m(t) setting ∂
∂po

m
H =

0,∀ m to arrive at

∂

∂p0
H = Ψ = 0. (2.41)

Upon substitution of this result in (2.40) we have

AΦ = 0. (2.42)

Further consideration of (2.25) and (2.23) in (2.42) leads to

l∑
m=1

anm

M∑
k=1

zmk

∫ t

0
exp[−αm(t − τ )] bk(τ ) dτ = 0 n = 1, 2, 3,. . . . , M,

(2.43)
which rewrites in vector matrix notation as (2.37).¤

Despite the fact that the convolution Volterra system (2.37) appears to be
well-posed, the problem of uniqueness of its solution cannot be expected to be
a simple one. This claim can straightforwardly be illustrated via an operational
solution of this system for optimalb(t)s. Indeed if we define the Laplace transform
pair

bk(t)↔ Bk(s), (2.44)

we are able to represent the Laplace transformed (2.37) system as

l∑
m=1

anm

S+ αm

M∑
k=1

zmkBk(s) = 0 n = 1, 2, 3,. . . . . , M. (2.45)

Let us introduce then theM × l functional matrixF(s) [equal to{ fnm(s)}]
with the entries

fnm(s) = anm

s+ αm
(2.46)

and thel × M coefficient matrix

Z = {zmk} (2.47)
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to put the homogeneous system of functional equations (2.45) in the vector-matrix
form,

F(s) Z B(s) = 0. (2.48)

Obviously a necessary and sufficient condition for (2.48) to accept nontrivial
B(s) solutions would be

det[F(s) Z] = 0,∀ s. (2.49)

Moreover, satisfaction of (2.49) does not guarantee uniqueness of the optimal
B(s) since it should still contain a number of free parameters (likeBk(s)↔ bk(t))
equalling to

M-rank [F(s) Z], (2.50)

which varies withs and cannot be less than one.

Proposition 2.1. For L1-solvability of (2.37)the dual condition to(2.49)should
be satisfied, i.e., a certain generalizeddetAE should not vanish.

Proof: It is quite possible to effectively replace the condition (2.49), when the
imageF(s) Z is regular enough, by some weak form in thes domain. Such a
form would define a certain unique, but generalized, corresponding solution in
thet domain. Actually, the pertaining uniqueness of solution to the scalar form of
equations like (2.37) has previously been thoroughly investigated by Titchmarsh
(Bukhgeim, 1999). For the case of square systems like (2.37), Asanov employed in
1998 the notions of convolution algebra to generalize the theorem of Titchmarsh to
establish the necessary and sufficient conditions for the uniqueness of the solution
on the commutative ring.

Following Asanov (1998), letx(t) be anm-dimensional vector function with
the norm‖x‖. Denote then byCm(I ) the space of continuous vector functionsx(t),
defined onI = [0, T ] or R+ = [0,∞], which is endowed with the norm

‖x‖C = max
t∈I
‖x‖. (2.51)

Moreover, for any two locally independent elements,a(t), b(t) ∈ C1(I )∩ L1
loc(I ),

it is possible to define the convolution (con) multiplication

a(t) ∗ b(t) =
∫ t

0
a(t − τ ) b(τ ) dτ t ∈ I .

Presumably,L1
loc(I ) is a commutative ring relative to this multiplication.
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Let also Cmn(I ) denote the set of allm× n matrices to invoke the con
multiplication:

Π(t) ∗ U(t) = V(t)

for (m× l ) by (l × n) matrices, yielding theV(t) [equal to {vi j (t)}] matrix of
(m× n) dimension with the elements

vi j (t) =
l∑

k=1

πik(t) ∗ ukj (t).

In a similar fashion, the con determinant (con.det) is defined for a square
matrixU equal to{ui j (t)} as

con.detU(t) =
m∑

j=1

ui j (t) ∗Ui j (t),

with Ui j (t) (equal to (−1)i+ j Mi j (t)) andMi j (t) as respectively the con algebraic
supplement and the con.minor of the elementui j (t) in any i th row.

By assuming the null space ofΓ(t) (equal toAE(t)) to be℘(Γ) and recog-
nizing that

Γ(t) ∈ CM M (I ),

it is possible now to state Asanov’s theorem (Asanov, 1998) for the system (3.27).
The system

Γ(t) ∗ b(t) = 0

has a unique solution in℘(Γ) ∩ L1
loc(I ) iff ∃ no numberδ ∈ I such that

con.det0(t) = 0 t ∈ (0, δ),

i.e. if the con.det0(t) ∈ C1(I ) is a reversible element relative to the∗ multipli-
cation (1). ¤

The question about what ˆµ(r ) is to be considered in optimal therapy remains
open but may also be resolved from an analysis of the corresponding static ballistic
index. So if

cm =
M∑

k=1

zmk (2.52)

and

c= [c1 c2 c3 · · · cm · · · cl ]
T , (2.53)

it is not difficult to illustrate that

ϕm(t) = qm(t)→ cm

αm
∀ m. (2.54)
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By stationarizing (2.30) and considering (2.54), it is possible to write the
following expression forβ(1), which corresponds to the same geometrical ar-
rangement ( ˆµ(r )) of the neutron beaming system addressed by (2.29)–(2.31):

β(1) =
l∑

m=1

N∑
i=1
i 6= j

wT
i ·Λ−1c

/
l∑

m=1

wT
j ·Λ−1c. (2.55)

3. PROBLEM WITH LINEARIZED BALLISTIC INDEX

The abovementioned nonuniqueness of the optimalB(s) and the problem of
existence of an analyticB◦(s) is expected to enhance any inherent instabilities in
the solution to (2.37). This may also be attributed to the fact that both the costate
equations (2.40) and the Hamiltonian

H (Φ, Ψ, p) = −ΨT ·ΛΦ+ΨT · p+
N∑

i=1
i 6= j

wT
i ·8

/
TwT

j ·8 (3.1)

are nonlinear inΦ(t). As a linear function ofp(t) this Hamiltonian has an absolute
minimum along the optimal trajectoriesΦo(t) no matter what the nature of the
constraint set forp(t) may possibly be.

The fact that the state equations (2.30) are linear in bothΦ andp indicates
that the above noted instabilities are not of neutron physical nature but are purely
mathematical consequences of the nonlinear formulation (2.29) for the Lagrangian,

L(Φ) = 1

T

N∑
i=1
i 6= j

wT
i ·Φ(t)

/
wT

j ·Φ(t), (3.2)

of the optimal control problem. All of this motivates us to try to relax the nonlin-
earity (Lee, 1966) inL(Φ) as a possible means for obtaining a unique optimalb◦(t)
for every configuration matrix ˆµ(r ) of the irradiating beams. Such a motivation is
enhanced further by observing the previous generic nonuniqueness of the solution
to (2.48) and to its inverse Laplace-transformed system (2.37). Clearly by virtue
of Lerch’s lemma, for any assumed analyticB(s) image one can straightforwardly
define a unique preimageb(t). Moreover, before stating the main result of this
section, we introduce the following notation:∫ T

0
qm(t) dt= εm (3.3)

and ∫ T

0
wT

i ·Φ(t) dt= TwT
i ·
∫ T

0
Φ(t) dt= TwT

i · Φ̄ = hi , (3.4)
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where h∗i is the value ofhi that corresponds to a certain optimal trajectory
Φ∗(t).

Theorem 3.1. The linearized dynamic ballistic indexβ(b) is minimized for a
givenµ̂(r ) by an optimal temporalb∗(t) vector satisfying the dual system of linear
integral equations ∫ t

0
A E(t − τ ) b(τ ) dτ = 0 (3.5)∫ T

0

∫ t

0
E(t − τ ) b(τ ) dτ dt= Eε, (3.6)

in whichEε is the solution vector to the linear programming problem

maxζ =
l∑

m=1

w jm −
N∑

i=1
i 6= j

wim

εm (3.7)

subject to

l∑
m=1

wimεm = h(0)
i ≤ or ≥ h∗i i = 1, 2, 3,. . . . . ≤N; i 6= j . (3.8)

Proof: Reconsiderβ(b) in the form

minβ(p) = 1− 1

T

∫ T

0


wT

j ·Φ(t)−
N∑

i=1
i 6= j

wT
i ·Φ(t)

/wT
j ·Φ(t)

 dt,

subject to (2.30) and (2.31).
Assume then the existence of a certain optimal control vectorb(0)(t)↔ B(0)(s)

derivable from (2.48) when

‖det[F(s)Z]‖ ≤ ∥∥Eδ(k)∥∥ (3.9)

via a system-conditioning scheme as, e.g.

B(1)(s) = Z−1 F−1(s) Eδ(1)

and

B(2)(s) = Z−1 F−1(s) Eδ(2)
,

with δ(2)
k 6= δ(1)

k , ∀ k. The entriesB(0)
k (s) are determined as the linear Richardson

extrapolation-like limits

B(0)
k (s) = [B(1)

k (s)δ(2)
k − B(2)

k (s)δ(1)
k

]/[
δ

(2)
k − δ(1)

k

]
. (3.10)
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Defining then the averaged numeric vectorΦ̄(0) to approximateβ(b), with β(p),
we have

β(p) ≈ 1− 1

T

∫ T

0

wT
j ·Φ(0)(t)−

N∑
i=1
i 6= j

wT
i ·Φ(0)(t)

 dt/TwT
j · Φ̄

(0)
. (3.11)

Clearly then the minimization ofβ(b) in the context of (2.29)–(2.31) is according
to (3.11) and (2.25), identical to

maxζ =
l∑

m=1

w jm −
N∑

i=1
i 6= j

wim

∫ T

0
q(0)

m (t) dt (3.12)

subject to

l∑
m=1

wim

∫ T

0
q(0)

m (t) dt= h(0)
i i = 1, 2, 3,. . . . . , N. (3.13)

Theh∗i of (3.8) can be taken either equal toh(0)
i or from the satisfaction of

h∗i = TwT
i ·Λ−1c, (3.14)

pertinent inβ(1) associated with the same geometrical ˆµ(r ) setting of the beams.
Replacement of (3.12) and (3.13) by (3.7) and (3.8) will always be valid for aq∗(t)
vector that is close toq(0)(t). ¤

4. BALLISTIC INDEX CONTROLLABILITY

The term controllability means the possibility of driving any regional neutron
flux inside the tumor back to its initial value in some finite time. Therefore estab-
lishment of the controllability of the ballistic index considered above is a further
proof that therapeutic neutrons are superior toγ rays or charged particles in their
response to temporal changes of their external beams.

It is well known that stability and controllability of the system of state equa-
tions (2.30) is closely tied to the nature of theαm elements in itsΛ matrix. We
emphasize here that our{αm}lm=1 set represents the eigenvalue spectrum of a com-
posite region BVP (2.10)–(2.13), which is after all a system Sturm Liouville 3D
problem. As such these eigenvalues should satisfy the condition

αm ≥ 0,∀ m. (4.1)

However, the 3D dimensionality of the BVP for theseαms is supposed to cause pos-
sible degeneracies (Knoble and McLaughlin, 1994) in some of these eigenvalues.
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Moreover, the satisfaction of (4.1) by the{αm}lm=1 set happens to guarantee a
stability, in the sense of Lyaponov (Kalman, 1964), for the solution to the (2.30)
system of transformed neutronic state equations. Therefore any emerging instabili-
ties during the course of finding the optimal control vector to the dynamical system
(2.29)–(2.31) should not be traced back to the pertinent transformed neutronic state
equations.

Furthermore, regardless of the nonuniqueness of the local (and even the quasi-
global) optimal control vector to the dynamical system (2.29)–(2.31), its state
controllability turns out to be independent of the nature of the{αm}lm=1 eigenvalue
spectrum. The controllability of the ballistic indexβ(b) directly follows the con-
trollability of regional flux vector, which is the controllability of practical interest,
and this may differ from the rather abstract state controllability.

Definition 4.1(Kuo, 1980). The dynamical system defined by (2.30) and (2.31)
is completely state controllable if∃ is a piecewise continuousp(t) defined over the
interval ti < t < t f that transforms the neutron diffusion process from an initial
stateΦ(ti ) to a final stateΦ(t f ) in the intervalt f − ti .

Lemma 4.1. For the system defined by(2.30)and (2.31)to be completely state
controllable it is sufficient (but not necessary) that the spectrum of eigenvalues of
the homogeneous BVP(2.10)–(2.13)is nondegenerate.

Proof: By observing that the necessary and sufficient condition for complete
controllability [19] of (2.30) and (2.31),

rank{1̂ ...−Λ
... Λ2 ... · · · · ·

... (−1)mΛm ... · · · · ·
... (−1)l−1Λl−1} = l ,

can always be satisfied and even forΛ matrices with repeated diagonal
elements. ¤

Theorem 4.1. For the system defined by(2.30) and (2.31) to be regional flux
controllable it is sufficient (but not necessary) that the spectrum of eigenvalues of
the homogeneous BVP(2.10)–(2.13)is nondegenerate.

Proof: Consider the regional flux expansion (2.15) and define the regional matrix

Ξi = (Θi 1(r ) Θi 2(r ) Θi 3(r ) · · · · · ·Θim(r ) · · · · · ·Θi l (r )).

Obviously the nondegeneracy of the eigenvalues mentioned in the theorem guar-
antees linear independence of the column vectors of4i in a sufficient but not
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necessary sense,∀i . The necessary and sufficient condition for complete regional
flux controllability of (2.30) and (2.31),

rank{Ξi
...−Ξi Λ

... Ξi Λ2 ... · · · · ·
... (−1)mΞi Λm ... · · · · ·

... (−1)l−1Ξi Λl−1} = l ,

can then always be satisfied.¤

Clearly the satisfaction of the conditions of this theorem can serve as an ana-
lytical and computational sufficiency criterion for the regional flux controllability
of therapeutic neutrons.

5. CONCLUSION

Optimalized neutron therapy of advanced cancers calls for extremizing their
ballistic index subject to the satisfaction of the associated mixed initial boundary
value problem of multigroup neutron diffusion. In this work, composite surface
integral transforms were demonstrated so as to enable reducing this optimization
problem to a dynamical system that is optimally controlled (with temporally tuned
external neutron beams) by means of Pontryagin’s maximum principle.

As for practicability of this rather novel modality for neutron therapy, the
more versatile is the composition of the tumor subdomains the less likely that
the associated{Θim(r )}lm=1 set of vectors,∀i , may become linearly dependent.
The advanced criterion for controllability indicates remarkably that for such tu-
mors the ballistic index of therapeutic neutrons should be expected to be more
controllable; given of course that the configurations of the irradiating neutron
beams are the same.

APPENDIX: PRELIMINARIES ON NEUTRON THERAPY

In therapy with neutrons, protons, or heavy ions, a specific problem requires to
be taken into account because of the fact that their relative biological effectiveness
(RBE) is significantly different and not unity. The RBE of fast neutrons varies
within wide limits, depending on the neutron energy spectrum, dose, biological
system, and endpoint. For proton beams, the RBE ranges within smaller limits,
(about 1.0–1.2). Furthermore, large variations of intrinsic radiosensitivities among
patients with identical tumor type make it quite difficult to select and classify
patients for specific radiotherapy schedules and protocols. This is basically because
cells in the different stages of the cell cycle in a tumor differ in radiosensitivity
with S-phase cells (the most radioresistant) and G2/M cells (most radiosensitive),
and the DNA content of the cells in these different stages also differ. DNA content
and cellular proliferation kinetics could actually have an influence on intrinsic
radiosensitivity and could serve as predictors of radiation response. This response
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is found by radiotherapy experience to depend more on tumor histology and stage
than on site of origin.

High energy proton beam radiotherapy of certain tumors is nowadays a tech-
nologically advanced and effective means in the selective destruction of cancer
cells. Its rational can be traced back to a paper published in 1946 by R. Wilson
(1946) who recognized that protons, with their well-defined range limited scatter-
ing potential, could be an ideal radiation modality for improving the physical dose
localization to a tumor target.

The main advantage of using proton beams in radiation therapy over x rays,
γ rays, electrons, or neutrons is the pertinent ability to use their sharp distal falloff
and lateral penumbra to shape the dose distribution very precisely to the tumor
volume, thereby sparing adjacent normal sensitive structures. However results of
Mills et al. (1992) and Larsson (1995) indicate that patients with small disease,
either unsuitable for or remaining after surgery, are the ones that will benefit
most from neutron therapy. Neutron therapy seem fortunately to be an effective
treatment for these negatively selected patients, and it remains the treatment of
choice (Stannardet al., 1995) for patients with advanced irresectable salivary
gland tumors and for those with macroscopic residual or questionable resectable
tumors. They can also be used for the treatment of technically resectable tumors of
head and neck, for cosmetic and logistic considerations, and for some metastatic
neutron-responsive tumors.

Other methods that include therapy with selectively accumulating radioiso-
topes (Haidar, 1992) such as131I and 99Tc, injected colloidal radioactive metals
like 198Au and63Zn, or artificially radioactive suspensions containing e.g.90Y or
177Lu have long been in practice (Hahn and Sheppard, 1948). A common problem
among all of these alternative methods has been in their nonuniformity of distribu-
tion inside some kinds of cancers. Such nonuniformity results with overdosage in
certain regions of the tumor and negligibly low doses in others. Neutron therapy is
expected to be more effective in such situations and could in principle be carried out
simultaneously with one or more of these alternatives, whose implementation may
affect the established neutron flux inside the tumor in various ways (Haidar, 1997).

Effectiveness of neutron therapy may also be intensified regionally by uptak-
ing in the tumor a biologically acceptable strong neutron absorber like10B, which
has a cross-section of 3840 barns for thermal neutron capture10B(n,α)7Li. The
reaction releases 2.8 MeV, including a 0.5 MeVγ ray. The ranges of theα and
7Li are 9 and 5µm respectively, about the size of the biological cell. It was sug-
gested as early as 1936 that if a tumor could be loaded with10B and irradiated with
thermal neutrons, energy would be released in the tumor cells. Three problems
of conventional radiotherapy would then be solved by this BNCT (boron neutron
capture therapy): attacking the tumor precisely, even on a microscopic scale, con-
forming the dose to tumor cells; and treating metastases. It is well documented
(see e.g., Hart and Fidler, 1981) that one of the most formidable obstacles to the
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successful treatment of metastatic diseases is the fact that cells of a tumor are
biologically heterogeneous.

Most neutron production methods generate high-energy neutrons, which, not
being captured by10B, irradiate indiscriminately; but thermal neutrons cause skin
damage, and penetrate only a few cms in tissues. The best compromise energy is
0.1–10 keV. Such neutrons penetrate with little damage, and are thermalized in
tissue. High enough fluxes of such filtered slow neutron beams have become avail-
able for therapeutic use only during the last decade; in a way widening the horizons
for this unique kind of radiotherapy. This situation, and important recent chemical
and biological developments, contribute to the renewed interest (McMichaelet al.,
1995) in the classical idea of BNCT. This modality, evidently dependent on the
ability of used boron compounds to penetrate in tumor tissue, is very likely to be
more useful for treatment of small local metastases and infiltrating tumor cells than
in radiotherapy for solid tumors. There has thus been a need for development of
improved boron-carriers, and important progress is being made (Larsson, 1995).

In order to improve uptake and specificity of boron in tumor cells, some new
approaches in synthesizing boron containing compounds, like some nido deriva-
tives ofDL-4-carboranyl phenylalnine, have been followed. Another strategy has
been to couple the boron containing compound to a tumor-affine protein (anti-
body, receptor ligand, liposomes etc.). Furthermore, boron can be localized in the
DNA of target cells, when coupled to a pyrimidine derivative or to a DNA dye,
respectively. Many other compounds have been synthesized, each using a different
approach in binding the tumor cells with10B. From the chemistry point of view,
BNCT is not yet optimized, and progress and success of this therapy mode depends
strongly on the progress in different fields in biology, physics, chemistry medicine
and mathematical modelling.
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